
Class Scheduler
SDDEC22-09
http://sddec22-09.sd.ece.iastate.edu
Advisor- Mai Zheng
Client- Vicky Thorland-Oster

Email: zmbunch@iastate.edu

Zachary Bunch, Connor Gaecke, Charlie
Mulderink, and Chris Horvatich

http://sddec22-09.sd.ece.iastate.edu

Problem Statement

The ECpE department has been using an overly complicated and inefficient method of

scheduling classes.

Our solution is to make a program that will assist in building the ECpE schedule by allowing the

user to easily chart classes and see conflicts, as well as sort classes.

Requirements

The Application needs to…

1. store classes and their parameters (such as times, location, sections, etc)

2. have functionality to add remove and edit courses and their parameters

3. chart the classes on a schedule

4. warn of classes and rooms that have scheduling conflicts

5. be easy to use and understand

Constraints and
Considerations

1. Specific classes need specific rooms and lab rooms.

2. The amount of classes offered can be overwhelming to a user so methods to easily
sort and view classes are necessary.

3. The calendar will need to be able to zoom both according to how many classes are
currently being shown and manually.

4. Different configurations need to be able to be saved and loaded.

Demonstration of Application

https://docs.google.com/file/d/1fCE5peLnmcKuwQGAKVJm9UfxH47VzZzC/preview
https://docs.google.com/file/d/1DuXuhxzpeoDXUb305sz59_c1vPWmsdDo/preview

Demonstration of Application

https://docs.google.com/file/d/1OitaX5tcCoU34M2V07XyhJ9982TpggZ9/preview
https://docs.google.com/file/d/1Nm0D4Q3-5PcA_n456KFDDKSQrGJrvZFa/preview

Frontend

We chose to make the gui with tkinter. A

Python gui library.

This provided tools like creating windows

and organizing widgets on the windows

Custom widgets could even be created but

they needed to be a combination of

pre-existing widgets

This was very helpful at first…

Tkinter lacked functionality in a few ways

Because custom widgets had to be

comprised of other widgets there was no

way to incorporate functionality that tkinter

did not support.

Such as panning or even scrollbars in certain

scenarios

Frontend elements

Backend - Internal Database

● Goal: The goal was to create an

internal database made up of CSV files

● CSV files were chose to make the data

more accessible to any user

● Challenge: We were not able to get

multiple CSV files to work together

within the Frontend of the application

● Challenge: Getting the CSV files to

leverage data from each other

Backend - Scheduling Algorithm

● Goal: Create an algorithm to optimize the schedule within

specific criteria

● Genetic Algorithm was chosen to implement scheduling as it

is a heuristic approach to optimization

● Challenge: Determining the optimal fitness for a

chromosome(schedule)

● Challenge: Correctly parsing CSV/python dictionaries for

needed information on courses

● Challenge: Determining functionality needed for each

python class

● Currently unrealized but framework exists

Challenges

Frontend

● Improving the ease of use for the

GUI

● Leveraging the CSV files from the

backend

● Getting the various GUI

components to work in unison

Backend

● Implementing working scheduling

algorithm
○ Framework/python classes implemented

○ Logic to load course information not

implemented

● Getting the CSV files to work with the

frontend

● Having the CSV files leverage data

from each other

Reflection

● Should have focused more on the technical complexity and less on ease of

use

● Instead of a standalone application, used a web application

● Leveraged the connection between tools like Angular and Bootstrap to

create the frontend

● Implemented the backend using MongoDB and Django

The End

Questions?

